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Personalized recommendation has received a lot of attention as a highly practical research topic. However,

existing recommender systems provide the recommendations with a generic statement such as “Customers

who bought this item also bought . . . ”. Explainable recommendation, which makes a user aware of why such

items are recommended, is in demand. The goal of our research is to make the users feel as if they are re-

ceiving recommendations from their friends. To this end, we formulate a new challenging problem called

personalized reason generation for explainable recommendation for songs in conversation applications and

propose a solution that generates a natural language explanation of the reason for recommending a song to

that particular user. For example, if the user is a student, our method can generate an output such as “Campus

radio plays this song at noon every day, and I think it sounds wonderful,” which the student may find easy to

relate to. In the offline experiments, through manual assessments, the gain of our method is statistically sig-

nificant on the relevance to songs and personalization to users comparing with baselines. Large-scale online

experiments show that our method outperforms manually selected reasons by 8.2% in terms of click-through

rate. Evaluation results indicate that our generated reasons are relevant to songs and personalized to users,

and they attract users to click the recommendations.
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1 INTRODUCTION

Personalized recommendation is considered an effective approach to solving the “consumer prod-
uct overload problem” in the digital era. The objective there is to learn which items may be suit-
able for a particular user rather than the average user. Besides the problem of what should be
recommended, why they should be recommended has received a lot of attention. Explainable rec-
ommendation helps improve the effectiveness, efficiency, persuasiveness, and user satisfaction of
recommender systems [1, 2]. However, generic explanations (“Customers who bought this item
also bought . . . ”) and feature-based explanations (“You may like this item because it is good at
these features . . . ”) proposed by existing recommender systems are designed by predefined forms,
and amore natural explanation form could be a piece of free-text that explains to the user in natural
language [1]. Thus, we regard recommendations with a generic explanation or some feature-based
explanations are not natural and do not necessarily encourage the user to accept in conversation
scenarios. In fact, it is possible that users will reject a recommended item that is actually suitable
for them, just because the generic recommendation explanation is not appealing. In light of the
above consideration, we formulate a problem that we call reason generation for explainable recom-
mendation in conversation applications, where our goal is to increase the click-through rate of the
recommended items by automatically generating recommendation reasons tailored to this goal. In
the present study, we focus on the song recommendation domain, as we are working to improve a
conversational song recommendation functionality of the XiaoIce chatbot,1 which has over 100M
users as of May 2018.
What constitutes an effective reason for recommending a song to the user? We consider the fol-

lowing requirements: (a) the generated reason is easy to read and understand as natural language
text; (b) it is relevant to the recommended song, so the user can understand why that particular
song is recommended; and (c) it is relevant to the interests and status of that particular user. For
example, a girl who likes pop music (interests) may generally prefer to listen to a happy pop song
in a major key, but not if she has just broken up with her boyfriend (status). This third requirement
is particularly important for the recommender to gain the user’s trust, so she will start accepting
the recommended songs.
Figure 1 demonstrates how our explainable song recommendation actually works in the XiaoIce

chatbot. In this example, the user says “I fell out of love. What should I listen to?” XiaoIce responds
by recommending a song named How to Weep Bitter Tearswhile providing a reason for the recom-
mendation: “Only lost in love to understand this song.”When the user cannot sleep, it recommends
a song and provides a reason:“Listen to this song at midnight, I feel full of memories.” We would
like to make the user feel as if she is receiving a recommendation from her friend, since people
often accept recommendations given by their friends [3].
There are several challenges to generating effective reasons in explainable song recommenda-

tion via conversations. First, we do not have any existing data that consists of actual song rec-
ommendations from friends; instead, what we have are the comments on songs posted to a music
website, and only some of them can be regarded as recommendation reasons. Second, we aim to

1http://www.msxiaoice.com/.
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Fig. 1. A snapshot of XiaoIce, recommending songs to a user followed by corresponding reasons during

conversations.

give a personalized reason to a specific user according to the description of his/her general inter-
ests and current status, although music websites lack these kinds of user tags. Furthermore, even
if we are able to leverage the comments from the music website to generate recommendations for
users, simply retrieving and reusing the comments will not satisfy the aforementioned Require-
ment (c). In particular, such an approach would not be able to handle recommendations of new
songs (i.e., songs for which we do not have any comment data from the music website) at all.
As an initial investigation into solving the aforementioned challenges, we build datasets that

consist of (song, user tag, reason) triplets and propose a method that learns to generate recom-
mendation reasons. First, from a music website, we extract song comments that can be regarded
as recommendation reasons using a two-phase method. Second, we collect reasons related to a
particular user tag by semantically expanding the tag and then retrieving relevant reasons. Third,
we use an encoder-decoder framework with attention [4–7] to generate a recommendation reason
for a particular song and a user. Fourth, we automatically score each generated text and filter out
bad ones. Our experimental results indicate that our proposed method statistically significantly
improves on the DeepFM [8] baseline in terms of overall rating (by 8.9%), relevance to a song (by
3.0%), and personalization (by 16.5%). The average fluency score of generated reasons is as high as
2.93, where 2 means acceptable and 3 means good. Furthermore, we deploy our proposed methods
on the XiaoIce chatbot and observe that the click-through rate of recommended songs improves
by at least 8.2% over four different baselines.
Our main contributions are as follows:

• We formulate a novel problem—namely, reason generation for explainable recommendation
in conversation applications. The task is to generate a personalized reason to make the user
feel as if they are receiving a recommendation from their friends.

• We demonstrate how to overcome the problem posed by a lack of training data for gener-
ating conversational reasons in the song recommendation domain. Moreover, our method
is extensible to other recommendation domains.

• We propose fusing user tags with the information of songs into the encoder-decoder model
with attention to generate personalized reasons. Experiments show the effectiveness of
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our method, and its deployment on the XiaoIce chatbot improves the click-through rate
substantially.

The rest of this article is organized as follows: We start with an overview of related work in
Section 2. Section 3 presents the details of our approach. Experiment results and discussions are
given in Section 4, and Section 5 concludes this article.

2 RELATEDWORK

Our work is related to two groups of work: explainable recommender systems and conversation
systems.

2.1 Explainable Recommender Systems

Instead of simply presenting recommended items to the user in traditional recommender sys-
tems [9–30], some researchers have tried to mine the reasons behind recommendations [27, 31–
41]. For example, Wang et al. [42] propose a new perspective that leverages knowledge graphs
for explainable recommendation. Explainable recommender systems can be grouped into four
categories: (1) User-based or item-based explainable systems (“You may like this item because
users similar to you like it” and “You may like this item because you liked these similar items”);
(2) Social-based explainable systems (“You may be interested in this item because your friend likes
it”); (3) Feature-based explainable systems (“You may like this item because it has these features”);
(4) Review-based explainable systems (“I love this series. I can’t wait for the next book. I love the
characters and the story line. I was so glad that the story was a little longer . . . ”).
The fundamental idea of collaborative filtering is looking for similar users and recommending

the items they are interested in. Thus, it is natural to explain a recommendation by “Customers
who bought this item also bought . . . ”. Schafer et al. [43] state that a recommender system would
be used to explain to a user what type of thing a product is, such as “this product you are looking
at is similar to these other products that you have liked in the past,” which is the main idea of item-
based collaborative filtering [16, 17]. Item-based explanations are usually more intuitive for users
to understand, because users are usually familiar with those products that he/she has purchased
before. However, item-based explanations are designed by predefined forms, and a more natural
explanation form could be a piece of free-text that explains to the user in natural language [1].
Thus, such common reasons are less appealing in conversation scenarios.
Among social-based explainable systems, Wang et al. [44] generate social explanations such

as “A and B also like the item.” They propose generating the persuasive social explanation by
recommending the optimal set of users to be put in the explanation. Kouki et al. [32] present
explanations such as “Your friend Cindy likes this item” by leveraging information from social
networks. However, in the conversation applications with private settings, there is no available
social network information between users.
Feature-based explanations can also be seen as content-based explanations. They provide rec-

ommendations by matching user preference with the available item content features [9, 10, 27,
34, 45–48]. For example, Zhang et al. [45] use phrase-level sentiment analysis to mine the explicit
features of items and the corresponding sentiment polarity of the user. They propose Explicit Fac-
tor Models (EFM) to fit user-item ratings by the latent representations. The features can also be
displayed in different forms [47–49]. Chen and Wang [34] extract informative features from item
descriptions and then utilize a template based sentence to show the strengths and weaknesses
of items such as “They have higher ratings for effective pixels and weight, but are rated lower
for price” for a camera. Wu and Ester [47] use word cloud explanation for hotel recommendation
generated based on latent topic modeling with textual reviews. Hou et al. [48] use radar charts to
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explain why an item is recommended to a user and why others are not recommended. In our con-
versation application, our explanation is not that formal but as casual as dialogs between friends.
In review-based explainable systems, Chen et al. [37] introduce an attention mechanism to

explore the usefulness of reviews and propose a neural attentional rating regression model
for recommendation. It can not only predict ratings, but it also learns the usefulness of each
review simultaneously. The obtained highly useful reviews provide review-level explanations.
The limitation is that it can only rank existing reviews for existing items. Our proposed method
can generate new reasons for new items, which alleviates the cold-start issue and data-sparsity
issue. Li et al. [50] propose a deep-learning-based framework called NRT that can simultaneously
predict precise ratings and summarize the massive reviews to generate abstractive tips. Costa
et al. [51] attempt to summarize items’ review sentences as explanations by learning large-scale
review data. However, in conversation scenarios, the summaries of user reviews are too long to be
similar with casual chatting between friends. That is why summaries cannot directly used here.
In addition, in contrast to the above studies, we aim at providing a recommendation reason that

is relevant to both the recommended song and to the user in conversation applications in such a
style to make the user feel as if they are receiving a recommendation from their friend.

2.2 Conversation Systems

Conversation systems include task-oriented dialog systems [52, 53], which are built for spe-
cific tasks such as ordering food, and non-task-oriented systems or chatbots [54], which aim to
mimic human-like conversations in open domains. The recent increase in the availability of con-
versational data has enabled rapid development of chatbots and dialog systems based on data-
driven approaches. One approach to this is retrieval-based [55, 56]: match a user input with ex-
isting question-and-answer pairs to retrieve the most appropriate responses. Another approach is
generation-based [7]: learn a response generation model within a Statistic Machine Translation
(SMT) framework from large-scale social conversation data.
A common generation-based approach treats posts as user inputs and comments as responses.

Response generation can be regarded as translation from posts to comments. Ritter et al. [57] find
that SMT techniques are more suitable than information retrieval approaches for the task of re-
sponse generation. A basic sequence-to-sequence model proposed by Cho et al. [4] consists of two
recurrent neural networks (RNNs): an encoder that processes the input and a decoder that gener-
ates the output. Multi-layer cells have been successfully used in sequence-to-sequence models by
Sutskever et al. [5]. To allow the decoder more direct access to the input, Bahdanau et al. [6] intro-
duce an attention mechanism. Shang et al. [7] propose a neural network-based response generator
for Short Text Conversation using the encoder-decoder framework. Our work utilizes a similar
neural model.
Task-oriented or not, when the system would like to recommend an item to the user during a

conversation, the recommendation is unlikely to be successful unless the system explains why it is
recommending that item to that specific user. To the best of our knowledge, existing studies have
not addressed this particular research problem.

3 OUR APPROACH

In this section, we first define the problem and describe our solution to generating a reason that
explains why a particular user should listen to a particular song.

3.1 Problem Formulation and System Overview

In the problem of reason generation for explainable recommendation in conversation applications,
we assume that a userU has asked the chatbot to recommend a song and that a recommendation
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Fig. 2. The flowchart of our proposed solution to generate personalized reasons for a particular song and a

particular user.

algorithm has returned a song S that is appropriate for the user. Our target is to generate a reason
as a sequence of words Y = (y1,y2, . . . ,yM ) to explain why the userU should listen to the song S .
The generation model maximizes the probability of Y conditioned on S andU : p (Y |S,U ).
To train a generation model, we need a dataset D = (Si ,Ui ,Yi )

N
i=1, but there is no existing data

of this kind. We propose extracting (Si ,Yi ) from comments that users post to songs on a music
website. Then, we use a method to retrieve relevant (Si ,Yi ) for Ui and thereby to compose the
required dataset 4. For example, in Figure 2, S is Snow with All My Heart, sung by Jacky Xue, and
it has some tags such as school time, mandarin, and so on. A user U has the tag student, which
represents his/her current status and is mined from the user’s chat logs. We manage to connect
them with the target reason “When our school snowed last year, my classmates forwarded this
song many times on the Internet.”
When we concatenate the representations of U with S , we can regard them as the source se-

quence X of a statistic machine translation model. The target sequence is Y . Hence, we apply
an encoder-decoder framework with attention to maximize the generation probability p (Y |X ).
Sometimes, generated texts contain errors that hurt their readability. Thus, we also propose some
automatic scoring metrics to filter out such noise.

3.2 Reason-like Comments Extraction

We crawl 80M comments of 1.2M pieces of music from NetEase Music.2 Most of them are songs.
We find that the comments of the following categories are useful as recommendation reasons:

Fact and Opinion. Comments of this kind focus on certain facts of the music and its related
entities, e.g., “The music reminds me of Totoro and sounds like Joe Hisaishi.” The facts
are sometimes described with opinions, e.g., “The rapping part is so difficult that I feel
my mouth crooked.” These comments are informative recommendation reasons, because
they provide insight into the commented music.

Emotion and Experience. Users may express their personal emotions and past experiences
when listening to the music, e.g., “I was about to sleep but now too excited to sleep.” and
“I used to like listening to this song more than watching TV when I was a child.” These
comments are also good recommendation reasons, as they can easily resonate with other

2http://music.163.com/.
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users. It should be noted that some comments of this kind are too personal and thus not
suitable for a chatbot to utter.

Joke and Story. These comments consist of jokes and stories made up by users, e.g., “Only
three persons in this world think you’re beautiful: your mom, your dad, and James Blunt.”
As recommendation reasons, they arouse users’ curiosity by making fun of certain facts.
However, some of these comments are too long or too detailed for a chatbot and should
be discarded.

On a music website, users also converse with each other. Comments within such a conversation
are not suitable for recommendation, because they highly depend on context, while recommenda-
tion reasons are expected to be self-explanatory. Spam is also excluded for recommendation.
Based on the above observations, we design a two-phase method to extract recommendation

reasons from the crawled comments.
In the first phase, we extract seed comments with two phrase lists, namely the allowed list and

the blocked list. A comment is considered a seed comment if it contains a phrase in the allowed list
(e.g., listen to this song, lyrics, and BGM) and does not contain any phrase in the blocked list (e.g.,
vote if your like, free music, and playlist). For the length of the seed comments, we set the number
of words ranging from 10 to 50. The comments that contain few words do not have enough infor-
mation to be a reason. Additionally, if the comments have too many words, they are so long that
users generally have no patience to read. Comments excluded for seed comments are all considered
as non-seed comments. We craft the rules in an iterative manner. In each iteration, we partition
the crawled comments into seed comments and non-seed comments. We then look for new rules
that improve the partition. The rules make use of various textual features, e.g., length of comment,
usage of punctuation and numbers, language, and repeating phrases. We extract 4.4M seed com-
ments in this phase. However, as seed comments only cover a fraction of actual recommendation
reasons and might be biased, we apply the second phase to fix this issue.
In the second phase, we train a classifier that takes a comment as input and predict if it can

be used as a recommendation reason. We take seed comments as positive samples and a random
equal-sized set of non-seed comments as negative samples. Features for a comment consist of the
features used in the first phase and a feature vector containing character uni-grams. We try several
popular classifiers, such as logistic regression, decision trees, and SVMs. It turns out that logistic
regression yields slightly better performance than others.We extract an additional 0.5M comments
in this phase.
Finally, 4.9M comments on 0.4M pieces of music are extracted as recommendation reasons. To

evaluate quality, we randomly sample 2K comments from the crawled comments and ask 10 vol-
unteers to label if a comment can be seen as a recommendation reason. 33% of comments are
labelled as recommendation reasons. The precision and recall of our method are 88% and 31%, re-
spectively. Since our goal is collecting comments to train the generation model, precision is much
more important than recall; hence, we believe that this level of performance is sufficient.

3.3 Retrieving User-related Reasons

As mentioned in Section 3.1, a userU is represented as a set of user tags. Given a user with a tag,
e.g., student, how can we obtain recommendation reasons that are suitable for him/her?

NetEase Music does not provide user tags. Hence, we rely on the user tags that we mine from
chat logs. The user tags are a set of predefined keywords covering users’ status and interests. Status
tags describe the current state or lifestyle of a user, e.g., break-up, student, and sleep late. These tags
are extracted from our internal user profiling system. The first two tags are inferred by two binary
classifiers: one is whether a user is a student and the other is whether a user is lovelorn. The

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 4, Article 41. Publication date: July 2019.
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classifiers were built based on text features. For the last tag, users who chat more often at night
are tagged as sleep late. Interest tags represent if a user likes or dislikes certain kind of entities,
e.g., color, food, and type of music. We extract entities mentioned by users and corresponding
sentiment. Entities with positive sentiment are considered as user interest. We manually select the
tags those are related to music and life style for this work. We find these tags cover most of our
users. Also, we filter out user tags that are not suitable for song recommendation: for example,
those that express dislike (e.g., dislike working). The remaining user tags are used for searching
NetEase Music to construct the training data (Si ,Ui ,Yi ).

To each user tag, we apply query expansion to enhance recall. Specifically, we first project the
user tag into a pre-trained Word2Vec model [58] and discover similar words in terms of cosine
similarity. For example, given the user tag student, we discover similar words including teacher,
worker, campus, and study. Next, we manually review the expanded words and filter the irrelevant
ones, such as worker in the above example. Finally, we retrieve reasons by using these queries.
A user is represented by multiple tags. In the retrieving user related reasons step, a random tag

is selected from tags assigned to the user. As multiple songs would be recommended in the dialog,
it would be boring if the recommendation reasons concentrate on only one or two user tags. To
avoid this, picking a random tag for each time is a simple but effective method.
In our experiments, we sample 22 user tags, and the query length after expansionwas 14.5 words

on average, ranging from 6 to 35.

3.4 Learning a Generation Model

We choose the recurrent attention network to model the generation probability p (Y |X ), where
X = (S,U ). For Si , we have music tags that are mined from playlists (denoted by (ti,1, . . . , ti,L ). We
use the top five music tags, i.e., L = 5), its singer names (denoted by дi ), and song names (denoted
by a sequence (qi,1, . . . ,qi,Ki , where Ki is the number of words in song names). Each user has
multiple tags, but for each training triplet, just one user tag is utilized as mined from chat logs:
Ui = (ui,1). Finally we concatenate S andU to compose X :

Xi = {ti,1, ti,2, ti,3, ti,4, ti,5,дi ,ui,1,qvi,1, . . . ,qvi,Ki }, (1)

where v indicates the parts with variable length. We arrange the fixed-size features before the
variable-length features such as song names, because the encoder-decoder framework with atten-
tion requires the input to be sequential to decide which parts of the input to pay attention to. We
keep the positions of fixed-length features steady to better retain their corresponding meaning
and weights.
An encoder reads X into vector h. Here, a bidirectional RNN [59] is utilized. Given an input

sequence with ordering from x1 to xT , the forward RNN calculates a sequence of its forward hidden

states {−→h1, . . . ,−→hT }. Meanwhile, reversing the input as the order from xT to x1, the backward RNN

calculates a sequence of its backward hidden states {←−h1, . . . ,←−hT }. Then, we obtain the final hidden

states by concatenating them as hj = {−→hj ,←−hj }, which saves the summaries of both the preceding
words and the following words.
The attention mechanism aims to find the parts of inputs that should be focused on. Thus, the

context vector c is calculated by a weighted sum of the final hidden states:

ct =
T∑

j=1

αt, jhj , (2)
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Personalized Reason Generation for Explainable Song Recommendation 41:9

where hj is the hidden state of the bidirectional RNN and the weight αt, j is computed by

αi, j =
exp(ei, j )

sumTx
k=1

exp(ei,k )
, (3)

where

ei, j = a(si−1,hj ), (4)

is an alignment model that scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden stat si−1 and the jth annotation hj of the input
sentence. a is a feedforward neural network that is jointly trained with all the other components
of the proposed system. More details can be found in Reference [6].
Given the predicted preceding words {y1,y2, . . . ,yt−1}, context vector ct , and the RNN hidden

state st , the decoder calculates a probability of the next word yt :

p (yt |x1,x2, . . . ,xT ,y1,y2, . . . ,yt−1) = д(yt−1, st , ct ), (5)

where д(·) is a softmax activation function and

st = f (yt−1, st−1, ct ). (6)

Here, f is a non-linear function. It can be a logistic function, an LSTM unit, or a GRU (Gated
Recurrent Unit). We use a GRU in our experiments.
Finally, we leverage a beam search strategy to generate the reason given by x1,x2, . . . ,xT . For

the first node, we go through the softmax activation function and calculate the Top K candidates
by p (y1 |x1,x2, . . . ,xT ). Then for each candidate y1, we calculate its next sequences by

yt = arg max
yi :i�2

p (yi |x1,x2, . . . ,xT ,y1,y2, . . . ,yi−1), (7)

until yt is equal to the “End of Sentence” symbol. Finally, we randomly select one from the K
generated candidates to ensure diversity of our output.

3.5 Scoring-generated Reasons

To guarantee that a generated reason is easy to read and understand, we need to filter out noisy
text. Thus, we propose learning a linear regression function of a score based on generation prob-
ability, a score based on N-gram language models, a score based on POS (Part-Of-Speech) RNN
language models, and a score based on dependency parsing. All scores are re-scaled into 0 to 1
before combination. Finally, we filter out reasons that do not pass a threshold.

3.5.1 Generation Probability. Generation probability measures how well a probability model
predicts a sample. A low generation probability indicates that the sample does not fit into our
model well. Given a sample Y = (y1,y2, . . . ,yM ), it is defined by:

Sдp =
M∑

i=1

log(p (yi |x1, . . . ,xT ,y1, . . . ,yi−1))/M, (8)

where yi is the predicted word by our generation model.
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3.5.2 N-gram Language Models. We leverage n-gram language models to measure whether a
word or a phrase or a combination is correct. For a sentence with length M , the score based on
n-grams (from bi-grams to five-grams) are calculated as follows:

Snд =
5∑

n=2

M∑

i=n

log(p (wi |wi−n+1:i−1))

+

5∑

j=1

M∑

i=j+1

log(p (wi |wi−j )).

(9)

where wi is the ith word of the sentence. The first part is calculated based on ordinary n-grams.
In the second part, we use a biterm language model [60], which counts word pairs separated by
zero or more words, to measure skip n-grams in the generated text. The two language models are
trained on the comments in our training set.

3.5.3 POS RNN Language Model. We train an RNN language model with POS (Part-Of-Speech)
tagged training data to describe the grammar correctness of a sentence. We utilize the public API
of Language Technology Platform3 (LTP) for POS parsing [61, 62]. The RNN language model is
implemented with a two-layer LSTMneural network. Then, themodel can calculate the generation
probability over the POS tag sequence as follows:

Spos =
M∑

i=1

log(p (posi |pos1,pos2, . . . ,posi−1))/M, (10)

where posi is the POS tag of the predicted word.

3.5.4 Dependency Parsing. We leverage the syntax dependence graph generated by using an
LTP API to analyze the constituents of a sentence. The dependence graph shows the syntactic re-
lations between different constituents. We collect the frequency of each directed pairwise relation
between two word nodes wa and wb as p (r |wa → wb ), where r is the syntactic relation between
wa andwb , from our training corpus. Then, given a sentence, we calculate a score as follows:

Sdp =
∑

∀{wa→wb }
p (r |wa → wb )/E, (11)

where E is the number of directed pairwise nodes in the generated syntax dependence graph of
the sentence.

4 EXPERIMENTS

In this section, we describe our dataset, evaluation of auto-scoring methods, and our offline and
online experiments to compare different methods.

4.1 Dataset

Our training data are crawled from NetEase Music, one of the most popular music websites in
China. As described in Section 3.2, we extract 4.9M reason-like comments for 0.4M songs. Among
the crawled songs, we manage to mine song tags for about 7,932 songs. However, we obtain 22
user tags to retrieve personalized reasons for our experiments. By joining the three sets, we finally
obtain a dataset of the form (Si ,Ui ,Yi ), which contains 2,778 songs (Si ), 206K reasons (Yi ) cor-
responding to 22 user tags (Ui ). These tags include student, electronic music, ballad, lovelorn, sleep
late, pure music, anime, girly girl, lolli, fashionista, food aficionado, study, rain, Chinese classes,math,

3https://www.ltp-cloud.com/intro/en/.
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Table 1. Comparing Different Automatic Scoring Methods

in Ranking Fluent Generated Reasons

Scoring Method nDCG@1 nDCG@5 nDCG@10
Generation Probability (gp) 0.901 0.933 0.967

N-gram Language Models (ng) 0.920 0.936 0.968
POS RNN Language Model (pos) 0.811 0.857 0.929

Dependency Parsing (dp) 0.761 0.845 0.924
Regression (all) 0.936 0.945 0.974

Regression (w/o dp) 0.940 0.945 0.974
Regression (w/o ng) 0.899 0.928 0.965
Regression (w/o pos) 0.939 0.945 0.973
Regression (w/o gp) 0.930 0.934 0.968
Regression (dp & ng) 0.922 0.932 0.968
Regression (dp & pos) 0.828 0.869 0.935
Regression (dp & gp) 0.895 0.927 0.964
Regression (ng & pos) 0.924 0.938 0.969
Regression (ng & gp) 0.943 0.946 0.974

Regression (pos & gp) 0.904 0.934 0.968

English, history, basketball, dog, reading, painting, and singing. We use this dataset for training our
reason generation model.

4.2 Evaluation of Automatic Scoring Methods

We collect human ratings from 1 (bad) to 3 (good) on fluency for 1K reasons related to 30 randomly
selected songs. We conduct 5-fold cross validation over the data to investigate the effectiveness
of features used for automatic scoring. Upon test data, we rank reasons for each song by their
corresponding scores and then evaluate the list by nDCG [63].
As Table 1 shows, when we use each individual feature to rank reasons, the features based on

N-gram language models (ng) and generation probability (gp) are the best two. They are consid-
erably better than the features based on POS RNN language model (pos) and dependency parsing
(dp) in terms of nDCG@1, 5, and 10. When we use linear regression to combine the four features,
the nDCG@1 can be further improved to 0.936, and the nDCG@10 can be improved to 0.974.
To clarify the contributions of different features, we built four regression models by removing

one individual feature at a time. The worse such a model is, the greater contribution the removed
feature has. According to Table 1, the ng feature leads to the biggest drop, from 0.936 to 0.899 in
nDCG@1. This indicates that such a feature is the most useful in scoring a fluent reason. The gp
feature is the second-most useful. Surprisingly, by removing the dp and pos features, the nDCG@1
slightly increases. This indicates that adding the two features may hurt the effectiveness of our
regression model.
We conduct additional experiments to combine any two features in regression. Results in Table 1

confirm that the model based on the ng and gp features performs the best in all metrics. The model
also beats the model based on all four features in nDGC@1, 5, and 10. Thus, we use the best
regression model as a scoring function in remaining experiments.
After we get the scores of generations, we filter out generations that do not pass a threshold.

To find the threshold, in the training set, we set the generations that only get one human rating as
the negative samples (noisy texts) and set the generations that get two or three human ratings as
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the positive samples. Then, we draw the Precision-Recall curve to find the break-even point (BEP).
At last, we get the threshold (i.e., 1.85) at the break-even point.

4.3 Offline Comparison of Reasons

4.3.1 Evaluation Metrics. We conduct offline evaluation to compare the effectiveness of differ-
ent methods in generating reasons for personalized song recommendation. We randomly sample
30 songs that are not included in training data for testing purposes. They are different from those
30 songs used in Section 4.2. For each method for comparison, we collect the top five results to
make a pool for assessments.
As user satisfaction is somehow difficult to explain or decompose, for a given song and a reason,

we first ask six assessors to independently give an overall rating on whether the text is bad (i.e.,
rating 1), acceptable (i.e., rating 2), or attractive (i.e., rating 3) as a reason. Then, we ask them to
give detailed ratings ranged from 1 (bad) to 3 (good). The detailed criteria are:

• Fluency. The generated reason is easy to read and understand as a natural language text.
• Relevance. It is relevant to the recommended song, so the user can understand why that

particular song is recommended.
• Personalization. It is relevant to the personality, interests, and situation of that particular

user.
• Overall. It is the overall rating that presents the generated reason could be an attractive

reason.

4.3.2 Compared Methods. In offline evaluation, we compare the following methods:

FM. Factorization Machines (FM) [64] are widely used in recommendation systems due to
their effectiveness and rich functionality. We build a tensor of (song, user tag, reason)
from our training dataset and leverage FM to predict the recommendation probabilities
of comments. The top five comments are returned as recommendation reasons.

DeepFM. This is a state-of-the-art method [8] in the area of recommender systems. It com-
bines the power of factorization machines for recommendation and deep learning for
feature learning in a new neural network architecture. We build a tensor of (song, user
tag, reason) as for FMmethod and leverage DeepFM to predict the recommendation prob-
abilities of comments.

Retrieval. The comments retrieved in Section 3.3 are used directly as recommendation rea-
sons of associated music.

Generation w/o userTag. To assess the effect of user tags, we consider a simplified version
of the proposed method. It just uses {Si ,Yi } to train a generator without user tags and
without automatic scoring.

Generation. This is our proposed method, which utilizes a generation model to produce the
personalized reasons with user tags for given songs, but without using any automatic
scoring function.

Generation w/Scoring. This is the ranked results of Generation by using the automatic scor-
ing method, where we adopt the best regression model based on N-gram language model
feature and generation probability feature.

For the experimental settings of our methods, RNN size of the encoder and decoder is 512. We
set batch size as 512 and epochs as 20. Word embedding is 620. The max length of input is 40 and
the max length of output is 20.
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Table 2. Comparing Methods of Obtaining Recommendation Reasons by Human Ratings

Method FM DeepFM Retrieval
Generation
w/o userTag

Generation
Generation
w/ Scoring

Top-1

Fluency 2.80 2.80 2.83 2.60 2.67 2.93

Relevance 1.97 1.97 1.90 1.80 1.93 2.03

Personalization 1.97 2.00 2.30 2.00 2.30 2.33

Overall 1.90 1.90 1.93 2.00 1.97 2.07

Top-3

Fluency 2.84 2.84 2.81 2.40 2.86 2.90

Relevance 1.91 1.91 1.91 1.93 2.03 2.06

Personalization 1.94 1.98 2.26 1.87 2.32 2.33

Overall 1.83 1.83 1.92 1.87 2.03 2.06

Top-5

Fluency 2.88 2.88 2.85 2.32 2.78 2.85

Relevance 1.91 1.91 1.89 1.92 1.97 2.05

Personalization 1.93 1.96 2.28 1.84 2.25 2.29

Overall 1.85 1.86 1.90 1.80 1.97 2.05

The numbers are average ratings.

Table 3. Tukey’s HSD Test Results between the Four Methods in Offline Evaluation Upon Top Five Reasons

Method pair Mean-diff (X − Y )
X Y Fluency Relevance Personalization Overall

FM DeepFM −0.0000 −0.0089 −0.0113 −0.0083
Retrieval

FM −0.0267 0.1022 0.1600∗ 0.0883

DeepFM −0.0267 0.0933 0.1467 0.0800

Generation w/o userTag

FM −0.5600∗ −0.2133 −0.3267∗ −0.1733
DeepFM −0.5600∗ −0.2222 −0.34∗ −0.1817
Retrieval −0.5333∗ −0.3156∗ −0.4867∗ −0.2617∗

Generation

FM −0.1000 0.0933 0.1067 0.0983

DeepFM −0.1000 0.0844 0.0933 0.0900

Retrieval −0.0733 −0.0089 −0.0533 0.0100

Generation w/o userTag 0.4600∗ 0.3067∗ 0.4333∗ 0.2717∗

Generation w/ scoring

FM −0.0267 0.1556∗ 0.1633∗ 0.1650∗

DeepFM −0.0267 0.1467∗ 0.15 0.1567∗

Retrieval 0.0000 0.0533 0.0033 0.0767

Generation w/o userTag 0.5333∗ 0.3689∗ 0.4900∗ 0.3383∗

Generation 0.0733 0.0622 0.0567 0.0667

The numbers are mean-diff between methods X an Y . “*” means that the difference is statistically significant at α = 0.05.

4.3.3 Performance Comparison. Table 2 shows the comparison result based on human ratings
and Table 3 shows the corresponding Tukey’s HSD (Honestly Significant Difference) test result.
Overall, our proposed generationmethod with scoring is the best; it is the only method that always
obtains scores above 2.0 on Overallmetric, which means it is above being acceptable. Tukey’s HSD
test shows the gain of our Generation with Scoring method over FM is statistically significant in
terms of Relevance, Personalized, and Overall. It also shows the gain of our Generation with Scoring
over DeepFM is statistically significant in terms of Relevance and Overall. Although the Fluency of
the Generation method is sometimes worse than FM, DeepFM, and Retrieval, which use existing
comments, our automatic scoring method can select more fluent reasons and improves Fluency
from 2.78 to 2.85 at the top five results. When our model discards user tags, the performance on
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Fig. 3. The impact of the number of generated reasons on the Top-1 result of our Generation w/Scoring

method.

Fig. 4. Visualization of attention weights between an input (S,U ) and the output reason Y . They reflect the
importance or contribution of a word in generating a reason. Darker color means more important.

all metrics, in particular Personalizaton, at the top five results in significant declines. This indi-
cates that our proposed generation method is not only user-sensitive but also performs better in
relevance and fluency.
We also show the impact of the number of generated reasons on the Top-1 result of our Gen-

eration w/Scoring method. As shown in Figure 3, the performance increases with the number of
generated reasons. It demonstrates the effectiveness of the proposed automatic scoring methods
and indicates that after generating a certain number of reasons (6 in Figure 3), the performance is
stable. It implies our method is stable in terms of quality, and we don’t need to generate too many
reasons to find a good one.

4.3.4 Visualization of Attention Weights. Figure 4 visualizes the attention over a particular gen-
erated reason. The song “Love Transfer,” by Eason Chen, is tagged with classic, school time, . . . , and
time. The user is tagged with student. Such information composes X as an input. Our model gen-
erates a reason Y : “I still remember at a classmate reunion I sang this song.” The color of each
cell represents the attention weight between a word in X and a word in Y . It can be observed,
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Fig. 5. Our method generates reasons for users with different tags and two songs in the training set. For

each song, the left text box shows its singer, song name, and five music tags. The right box contains three

user tags and generated reasons for them.

for example, that the attention weight for the pair school time and classmate and that for the pair
publicize and sang are high, as the words are semantically related. If we sum the weights for each
input word (i.e., each line), then two song tags, i.e., school time and publicize, the song name “Love
Transfer” and the user tag student are the most salient. This shows that our proposed model can
utilize both song information and user tags in generating reasons.

4.3.5 Effectiveness on Known Songs and New Songs. When looking into detailed cases, we find
that our method can generate some new and interesting recommendation reasons for both known
songs and new ones. When a song is included in training data, e.g., Twilight’s “Chapter Seven,” our
approach can generate some reasons that have not appeared in training data. For example, all the
generated reasons shown in Figure 5 have no exact same occurrences in existing data. The singer
of Twilight’s “Chapter Seven” is Jay Chou, and its extracted music tags are school time, rap, and
so on. For a user whose tag is pure music, our model generates the reason: “As soon as the intro
starts, I know it is Jay Chou’s song.” For a user whose tag is (liking) Chinese, our model generates
the reason: “I hope I can write the lyrics of Jay for the composition of tomorrow’s exam.” We show
more examples in Figure 5. It can be observed that our model can generate novel and personalized
reasons for known songs.
Our method generally works well for a new song that does not have any existing comments,

because the singer and/or the tags of that song may not be new. As shown in Table 4, the new
song “I Love You but Goodbye,” by the singer Pushu, is tagged with ballad, college years, rock, and
so on. For a user whose tag is lovelorn, our model generates the reason: “Every time I listen to this
song, I think of my first love.” Although there is no specific comment on the song, such a reason
may have resonance for the user who has just been bereft of love. For a user who loves ballads,
our model generates the reason: “Every time I listen to this song, I have a very quiet feeling.” The
examples in Table 4 indicate that our method can generate recommendation reasons that apply to
songs outside the training data.

4.3.6 Effectiveness on Multiple Tags. During training, there is no issue of multiple tags, because
we construct our training data by retrieving relevant reasons to a specific tag. Our dataset consists
of (song, user tag, reason) triplets. When we apply our proposed approach online, a user can have
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Table 4. Our Method Generates Reasons for Users with a Single Tag in the Test Set

multiple tags. We will randomly select one tag to generate a reason. As a result, such a simple
strategy can diversify the reasons when we recommend different songs to the user. Although so
far we lack such data, we try to use our model trained by one user tag to generate reasons with
multiple user tags. Table 5 shows the generated reasons for users with multiple tags. It indicates
our model can be utilized to generate reasons with multipl tags, but some of the generations seem
like a simple mixing of different reasons and are not fluent.

4.3.7 Examples of the Generated Reasons. Here we show some generations of the compared
methods in Table 6. These generations are mostly fluent, but the generations of FM and DeepFM
methods actually do not match the designed user tag. Most of the generations of Retrieval method
canmatch the user tag, but some noisemay be introduced. For example, when a user tag is designed
as Study, Retrieval method introduces “Japanese,” which is in conflict with the truth that this song
is Korean. However, our method generates short reasons in trying to avoid introducing irrelevant
content, and its generations can match user tags. Furthermore, our model also may generate bad
cases as existing methods. Some generated reasons are not correct sentences or they cannot be
understood. For example, “A single man listening to this is truly truly.” That is consistent with our
evaluation on fluency. The generation model can produce some new sentences that do not exist in
the training data, whereas the generation is not perfect all the time.

4.4 Online Evaluation

Our objective is to increase the click-through rate of our recommended songs. The aforemen-
tioned offline experiments rely on assessors who are not the actual users of our recommendation
service. Therefore, we conduct an online evaluation of methods by comparing the Click-Through
Rate (CTR), i.e., the number of clicked songs divided by the number of songs shown to users. We
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Table 5. Our Method Generates Reasons for Users with Multiple Tags in the Test Set

generate 40K reasons for CTR comparison on about 1,400 recommended songs that are the most
popular songs in our service.

4.4.1 Compared Methods. We conduct online experiments by deploying the following reason-
generation methods:

Chat Responses. We use the query that a user asks for a song recommendation (e.g., “I fell
out of love. What should I listen to?” in Figure 1) to retrieve a chat response as the rec-
ommendation reason.

Mined Reason-like Comments. We use one of the mined reason-like comments (see Sec-
tion 3.2) that are posted to the recommended song as the reason.

Manually Selected Reason-like Comments. We ask assessors to review all the mined
reason-like comments and select those that are acceptable recommendation reasons. We
then randomly draw one from them. If we always choose the reason with the highest
confidence score, then the conversation does not have diversity and easily make users
boring. The randommechanism is a basic operation for XiaoIce. Thus, we randomly drew
one reason from the 10 generated reasons.

Generated Reasons w/o userTag. We use {Si ,Yi } to train our generator. Given a song, we
generate 10 reasons offline and randomly draw one from them.

Generated Reasons w/Scoring. Given a song and a user tag, we generate 10 reasons offline
with the proposed method of Generation w/Scoring. We then randomly draw one from
them.

4.4.2 Performance Comparison. We collect user activities on the XiaoIce chatbot from July 28,
2017, to Jan. 31, 2018. Then, we compute the CTRs for the compared methods based on the same
songs. We hide the number of impressions due to confidentiality concerns. The results are shown
in Table 7.
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Table 6. Some Generations of the Compared Methods

Table 7. Comparing Five Methods by Deploying Them on the XiaoIce

Chatbot Online and Collecting Their Click-through Rates

Method Click Rate Improves By
(1) Chat Responses 0.444 +12.8%
(2) Mined Reason-like Comments 0.448 +11.8%
(3) Manual Selected Reasons from (2) 0.463 +8.2%
(4) Generated Reasons w/o userTag 0.437 +14.6%
(5) Generated Reasons w/ Scoring 0.501 -

Table 7 shows that our proposedmethodGeneration w/ Scoring outperforms the other fourmeth-
ods. In particular, it outperforms even theManually Selected Reason-like Comments by 8.2%, which
demonstrates the power of generating a reason for a given song-user pair. Moreover, it can be
observed that the version of our model that learns without user tags performs the worst, which
shows the advantages of learning from the (song, user tag, reason) triplets and hence the impor-
tance of personalization. Our proposed method improves the mined reason-like comments, which
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are associated with a song by real music website users, by 11.8%. This also confirms the power of
personalized recommendation reasons in conversations.

5 CONCLUSION AND FUTURE WORK

We formulate a new challenging problem called reason generation for explainable recommen-
dation in conversation applications, where our goal is to increase the click-through rate of the
recommended songs by generating recommendation reasons that make users feel as if they are
receiving them from their friends. To this end, we build a dataset that consists of (song, user tag,
reason) triplets by joining data from a music website and the XiaoIce chatbot and construct a
system that learns to generate recommendation reasons for any given song-user pair. Our exper-
iments indicate that our method statistically significantly improves on the DeepFM [8] baseline
in terms of overall rating (by 8.9%), relevance to a song (by 3.0%), and personalization (by 16.5%).
The average fluency score of generated reasons is as high as 2.93, where 2 means acceptable and
3 means good. Furthermore, we deploy our proposed methods on the XiaoIce chatbot and observe
that the click-through rate of recommended songs improves by at least 8.2% over four different
baselines. The improvements indicate that personalized reasons attract more end-users.
In our futurework, we plan to incorporate information from song lyrics to increase the relevance

of songs to users and to better handle new songs that lack tags. Moreover, we would like to address
user tags to generate a fusion reason to deal with the complex and various needs for users.
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